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Abstract

The methods developed in the earlier papers of this series are applied to the systematic derivation of
averaged equations for two situations: slow viscous flow past a system of rigid spheres fixed in space (which
may be considered as approximating a porous medium), and the flow induced by a system of fixed spheres
all spinning with the same angular velocity. When the same closure relations used in the earlier papers are
applied, it is found that the closure coefficients are different. This finding implies that broadly applicable
closure relations expressed solely in terms of volume fraction, velocities, and pressure (as usually found in
models of the ‘two-fluid’ type) are insufficient: it must be that one or more additional variables need to be
specified to achieve some degree of universality independent of the particular flow considered. It is also
shown that the difficulties in the prescription of the viscosity parameter for use in the Brinkman equation
derive from the fact that the correct parameter is actually the combination of two different viscosities that
accidentally end up combined into a single term when the particles are fixed. © 2001 Elsevier Science Ltd.
All rights reserved.

1. Introduction

In parts I and IT of this study (Marchioro et al., 2000, 2001), we have described a method for the
systematic derivation of closure relations for the averaged equations describing the slow viscous
flow of a fluid containing equal suspended rigid spheres. The Introductions of those papers give a
description of the background and motivations for this work. In this paper, we apply the same
methods to two other flow situations. In the first one the particles do not rotate and translate with
the same velocity which, without loss of generality, is taken to vanish: the situation can therefore
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be interpreted as modeling pressure-driven flow through a porous medium. The second flow is
generated by imposing a fixed angular velocity on the spheres keeping their centers fixed. We are
thus able to examine whether the same closure relations derived in the earlier papers are also
applicable to the ones considered here. Such a degree of ‘universality’ is of course the implicit
postulate lying at the root of attempts at an averaged description of multiphase flow.

Our answer is negative: it does not seem that models solely phrased in terms of volume frac-
tions, mean velocities, and pressure — as usually encountered in ‘two-fluid’ formulations — possess
a closure capable of reproducing all the flow situations examined in the present series of papers.
Some comments on the origin of the problem and a possible solution are offered in the final
section.

Another interesting point arising from this study is an explanation of the well-known fact that
the correct viscosity to use in the Brinkman equation differs from both the viscosity of the pure
fluid and the effective viscosity of the mixture (see e.g., Martys et al., 1994). It is shown that two
inherently different terms in the stress of the system coalesce into one when the particle velocities
are all equal; the Brinkman viscosity therefore, is the combination of the two closure coefficients
that arise in these two terms.

The methods and approach of this study are explained in detail in parts [ and II and will not be
repeated for brevity. Only the essential differences with the earlier work will be pointed out. We
refer to the equations in parts I and II by the prefixes I and II before the equation numbers.

2. The averaged equations and their closure

The form of the averaged equations that we use in this paper has been discussed and justified in
Marchioro et al. (1999); throughout this paper indices C and D denote the continuous and dis-
perse phases.

We assume that both the fluid and the particles are incompressible so that the mean volumetric
flux u,, is divergenceless:

V. u, =0. (2.1)

The relation between u,, and the phase-average velocities of the continuous and disperse phases,
(ucp), is:

Un = feluc) + fp(up), (2.2)

where f. , are the volume fractions satisfying fi- + fip = 1.

The momentum equation for the continuous phase is given in Eq. (126) of Marchioro et al.
(1999) and, with the neglect of inertia and body forces (and after correcting some obvious mis-
prints), is

i

10
Here py, is the mixture pressure and X the mixture stress; both quantities have been analyzed at
length in Marchioro et al. (1999). The quantity .o/ is the mean hydrodynamic force acting on the
particles given by

BV - (—pml + Z¢) = —Pof — —[(Vn) x (V x Z) +nV(V - 7). (2.3)
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o (X) = /| dSn-oc(x +1), (2.4)

where the overline denotes the average over the particles instantaneously centered at x, > and n is
the unit normal directed out of the particle; since time is immaterial in the situations considered in
this paper, we omit its explicit indication. The mean interphase force f is introduced by decom-
posing ./ as

dSn - oc — vV - ( —pml + Zc) — Uf, (25)
[r|=a
where v = (4/3)na’ is the volume of the particles, all with the same radius a. The first term in the
right-hand side accounts for the part of the force arising due to the large-scale structure of the
flow (e.g., the so-called pseudo-buoyancy), while the second term can be identified with
the component of the force due to the local flow structure around the particles and will contain
contributions due to drag, the Faxen term, and others.
With this decomposition, the momentum balance for the particles in the unit volume is

oV - (= pul + 2¢) — nof + nb = 0, (2.6)

where 7 is the particle number density and b the non-hydrodynamic force exerted on the particles
by external agents such as, in the situations to be considered below, the constraints that keep their
position fixed. For future reference we note that, upon eliminating the divergence term between
(2.3) and (2.4), and using the fact that the external force must balance the total hydrodynamic
force, we find

f:—'g—;ﬂ—?—;[(Vn)x(ny/)+nV(V-&/)}. (2.7)

Under the same assumptions, the balance of angular momentum for the particles is

M=aq dSn x (6c -mn) = T, (2.8)

[r|=a

where T is the mean non-hydrodynamic couple acting on the particles.
The closure of the momentum equations was studied in part II, where the mixture stress was
expressed as the sum of an isotropic, a symmetric, and an antisymmetric component:

(ZC),‘]‘ = —qmél‘j + Sij + S(jl(R[ - Slqraqu). (29)

Closure relations were deduced for each one of the components. These relations contained the
particle-fluid “slip” velocity uy = W — u,,, where W is the mean center-of-mass velocity of the
particles, and the analogous relative angular velocity

1
2,=0 -5V xu, (2.10)

2 This is the particle average introduced in the earlier papers.
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where  is the mean particle angular velocity. In the situations studied in this paper, W vanishes
identically and £ is either zero or an imposed value equal for all the particles. Keeping these facts
in mind, the closure relations of paper II simplify and become:

1
—m = —Oolly - Vfip, (2.11)
Hc
S = 2(tterr — t14)Em + pt5Ey + 214" En V2 s, (2.12)
1 2 1 22 2
—V =—-Nuy + ha'Ey - VBp + V3—§V;],—V9 aNuy, + Vsa"Vp x 24
Hc
- a2V7(“m -V)VBp — a VgumvzﬁDa (2.13)
1

1
M—R =R+ R:a’V x (B - VBp) + <R3 - §R9>a2V2(V X Up) — R4V X up,
C

— RSVﬁD X Uy +R702(QA . V)VﬁD + azRgﬂszﬁD, (214)

1
of = 6nuca’fe | — a *Fiug + BEy - VBp + <F3 —5Fi - Fg> YV, + FVBp x Q4

— F(uy - V)V — FgumvzﬁD] , (2.15)

1
MiM = —LIQA +L2a2V X (Em . VﬁD) + <L3 — §L9> aZVZ(V X llm) — L4V X Uy
C

— LsVfp X Uy + L1d> (2,4 - V)V + AL,V B (2.16)

All the symbols with a numerical subscript are coefficients that need to be determined; . is the
viscosity coefficient of the pure fluid and u. is the effective viscosity well-known from the study of
uniform suspensions. The other quantities appearing in these equations are the rate of strain of
the field u,,:

En = |Vug, + (Vum)T} (2.17)

and a tensor constructed in terms of the ‘slip’ velocity u, (see paper II, Eq. 5.9) which, in this case
in which w =0, degenerates to

Ey = —(1/2)[unVfp + Vfptn] + (1/3) (un - Vfp)L. (2.18)

The procedure we apply in this paper is the same as in papers I and II and may be summarized
as follows:

1. We choose the mixture pressure p,,, the volumetric flow rate u,,, and the particle volume frac-
tion f, as the fundamental average quantities of the theory and express them in terms of the
agents forcing the two flows studied in the paper, namely, an imposed pressure gradient and
an imposed particle angular velocity, in both cases with the particle centers fixed; the relation
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between average quantities and forcing agents contains coeflicients that will be determined from
the numerical simulations.

2. We express in the same way the quantities to be closed, namely, S, ¢, V, etc., all of which can
be computed numerically according to unambiguous prescriptions given in the earlier papers;
once again, the coefficients necessary for this purpose are determined numerically.

3. By substituting the relations mentioned at point 1 into the right-hand sides of Eqs. (2.11)—(2.16)
above, and the relations mentioned at point 2 into the left-hand sides, we obtain a series of
equations that determine some of the coefficients carrying a numerical subscript in these equa-
tions.

For further details on this approach and further consideration the reader is referred to papers I

and II.

3. Preliminaries
Eq. (2.3) is the final form of the momentum equation advocated in Marchioro et al. (1999).

However, for the present purposes, just as was done in paper I, it is more helpful to start from the
slightly different form

V. (—pul + 2ucEn + Xp) = net, (3.1)
where
2p = (pm — Bclpc)1+ P2, (3.2)

with pc the continuous-phase pressure; £ is a tensor involving surface integrals of higher mo-
ments of the traction on the particle surface (see Eq. 7 in Marchioro et al., 2001 or Eq. [,19). Form
(2.3) is found by using decomposition (2.5) of ./ and writing

V(= Belpc)l + 2ucEn + Bp L) — nod

:V-(—pm1+zc)—ﬁ—"&/+10[( Vi) x (V x o) +nV(V - Z)]. (3.3)

The justification for this procedure is given in detail in Marchioro et al. (1999) and will not be
repeated here.

As in parts I and II, we approximate the spatially unbounded fluid-particle systems of present
concern by replicating periodically a unit cubic cell of side L containing N particles. The particles
are placed at random and a collection of systems so generated constitutes our ensemble. As de-
scribed in detail in part I, we construct a slightly non-uniform probability distribution on each one
of our ensembles characterized by a sinusoidal spatial variation

esink - x, (3.4)

where |k| = 2n/L and the direction of k is taken along one of the sides of the unit cell; the pa-
rameter e is assumed to be small and only terms of the first order in € are retained.

Due to this underlying periodic structure, all our ensemble and particle averages can be ex-
panded in a Fourier series which is truncated to the first non-uniform mode. For example, the
particle number density is
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n=n"+en'sink - x, (3.5)
where n°, n° are constants dependent on the volume fraction and on the cell size. Similarly,
Bo = P + €f, sin k - x. (3.6)
It is shown in part I that

v , ak*\

where V' = L3 is the volume of the unit cell. It will prove convenient to use the abbreviations
€ = esink - x, €. =ecosk-x. (3.8)

The sinusoidal spatial dependence exhibited by (3.5) and (3.6) applies to all the average fields, in
general including also a term proportional to e cosk - x that happens to vanish in the expressions
for n and f,; for example

oA = A + oA e+ oA, (3.9)
u, = U’ 4 U'e, 4 Ue, (3.10)
1 ,

— 2, =L+ L + €L, (3.11)
Hc

and so forth. The Fourier coefficients n’, .o7*, .o/ etc. appearing in these and similar expressions
will be suitably parameterized and calculated numerically as mentioned before and detailed in
paper II. Note that since, on the particle scale, the cell side L is large, the spatial variation ex-
pressed by these relations is slow when measured on the scale a. Furthermore, as a consequence of
the sinusoidal dependence on position of the average fields, every derivative introduces an ad-
ditional power of k = 2m/L.

Finally, concerning the last term in (3.3), we note that (Vn) x (V x .o7) is of order €2, and hence
negligible at the level of accuracy retained in this study. As for the contribution V(V - .«7), when
the decomposition (2.5) for .7 is used, it is seen that it would introduce a term V>Vp,, in the
momentum equation, which would alter the mathematical nature of the averaged equations re-
quiring additional boundary conditions about which nothing is known. It appears therefore likely
that such a term would constitute a higher order correction and may be expected to be negligible
so that V(V - .o/) ~ —vV(V - f).

4. Mean pressure and volumetric flux

As in paper I, rather than calculating p,, and the mixture volumetric flow rate u,, directly from
their definition as ensemble averages, it is more convenient to use the averaged momentum
equation (3.1) which may be rewritten as

~Vpum + ucVuy, + V- Xp = not. (4.1)
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Upon taking the divergence of this relation and recalling the incompressibility condition (2.1) we
find

VDm =VV: 2 — V- (nsd). (4.2)

The divergence of the viscous stress for a spatially uniform system, V - L°, must be a constant and,
therefore, VV : L° = 0. Upon recalling Egs. (3.5) and (3.9) and dropping terms of order €2, we
find from (4.2):

Vpm = =k puem - (L'eg + L) -m — km - [e.(n".o/* + n°/") — en’ /€], (4.3)

where m = k/k. At this point, it is convenient to present different developments for the two flow
situations considered in this paper.

4.1. Porous medium

The first situation we consider — which we refer to as a porous medium — is one in which the
particles cannot rotate and all have the same translational velocity which, without loss of gen-
erality, is taken to vanish. In this case, the flow is forced by a constant imposed pressure gradient
Voo

In the case of a spatially uniform porous medium often treated in the literature (see e.g., Mo
and Sangani, 1994), one introduces the permeability K = K(f;) that relates the imposed pressure
gradient to the volumetric flow rate U, Normalized in such a way that K — 1 for i, — 0, this
quantity is defined by

=L KVp... (4.4)

In this uniform case the stress reduces to L’, which vanishes, and the momentum equation (4.1)
simply gives

~Vpoo =1/’ = n’apcA°U°, (4.5)
where, from (4.4),
6
A0 = % (4.6)

Fig. 1 shows a graph of K vs. ak as determined from our simulations for f, = 15% (triangles),
25% (circles) and 35% (squares); the symbols are the numerical results and the lines least-squares
fits of the form A + B(ak)’. The fits are seen to match the data very well so that one can have
confidence in the extrapolation to ak = 0. These extrapolated values are shown as function of fp,
in Fig. 2; the solid line is a fit of the form

K = (1 o ﬁD)9.712710.66ﬁD (47)

in which the numerical constants have been obtained by a least squares fit; the dashed segments in
the figure will be explained below.
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Fig. 1. The dimensionless permeability of a porous medium defined in (4.6) as a function of ka for [)’?3 = 15% (tri-
angles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form 4 + B(ak)z.
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Fig. 2. The dimensionless permeability of a porous medium K evaluated at ak = 0 from the previous figure as a
function of the disperse-phase volume fraction fi,; the points are the computed values and the line the fit (4.7). The
dashed segments have the slope given by (5.24).
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This same quantity K has also been calculated by Mo and Sangani (1994); for f, = 25% and
35% we find K = 0.140 and 0.0726, to be compared with 0.141 and 0.0704 given in that paper. A
discussion of these results is deferred to Section 7.

Let us now turn to the spatially non-uniform situation. Since the flow only occurs due to the
imposed pressure gradient and the problem is linear, all vector quantities, such as .o/, must be
linear in Vp,, or, equivalently, in U". It proves convenient to introduce the components of U°
parallel and normal to the particle non-homogeneity by defining

Uj= (U mm, U]=(I-mm)- U (4.8)
It must then be possible to write
1 0y 10 J 70 /0
o =AU ;ej<ALUL +A”U”). (4.9)
By a similar argument, axial vectors and scalars must be proportional to
mx U’ and U°.-m, (4.10)

respectively, since these are the only available quantities with the required tensorial character.
Flow tensors such as L must be expressible in terms of tensors linear in U’; as in paper I it
proves useful to define

G/ =Um+mU), G/=U\m-mU}, G/=(U" m,

1 4.11
ng(UO-m)<mm—§I>, @10
so that, with the superscript j=s or ¢,
kU = Gy + £,G] + €G] + £,Gyy, (4.12)

where the factor & in the left-hand side has been introduced to make the coefficients ¢ dimen-
sionless.
The pressure equation (4.3) may be integrated to give, up to an arbitrary constant,

1 1 1 S 2s 0.3 4c
%Pm: M_CX'VPOC+@[<£1+§£M+” aAL>es

. 2 c K s
- <e; +30 — @4 +nA0>)ec} (V" m). (4.13)

When this expression is substituted into the momentum equation (4.1), the solution for u,, can be
expressed as in (3.10) with

U’ 0+ 0 — na’ 4, ) U, (4.14)

T 2a (
and a similar result for U®. The numerical simulations to be described below suggest that 49, 4],
5, and £ all vanish; accepting this fact we conclude that U° =0 so that

u, = U’ + U, UY, (4.15)
where, from (4.14),
PRUS = 6+ 1 — a4, (4.16)
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Fig. 3. The quantity U* appearing in expression (4.16) for the mean fluid velocity in a porous medium as a function of
ka for ﬁ% = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form
A+ B(ak)’.

Similarly, the pressure expression (4.13) becomes

1 1 Pe
= pm=—X-Vpo +—¢.(U; -m), 4.17
bm =XV +oae(Uy-m) (4.17)
with
2
P =1+ §€j4 — n0a3Aﬂ —n'a’4’. (4.18)

Fig. 3 shows U* vs. ak for ﬁOD = 15%, 25% and 35%. The scatter of the numerical results is small
and the quadratic fits shown by the lines match them well; in particular, note that division by &2,
as implied by (4.16), does seem to bring U* to a finite value as ak — 0.

In the following, we need expressions for the rate of strain E,, and for Ey defined in (2.17)
(2.18); with (4.15), these quantities are given by

1 1
Ey =S UekGy,  Ey=—skefpGy — keefpGyy, (4.19)
while, from Eq. (4.9),
nV(V -f) = aucnk*4; U] (4.20)

4.2. Spinning particles

The second situation that we study is characterized by the fact that the particles rotate all with
the same angular velocity £2 maintaining a fixed position. Clearly, in this situation, there would be
no net flow if the particle distribution were spatially uniform and, therefore, U’ = 0. This fact is
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intuitively clear, but may also be deduced from the fact that it is impossible to construct a polar
vector such as U” using only the axial vector € (see also Brenner, 1984).

In a non-uniform system, however, the vector m is also available and one can construct the
polar vector

2, =mxQ (4.21)
in terms of which it is possible to express the velocity. The available two-tensors are

G =Qm+mQ,, G/=Qm-mQ,. (4.22)
Since there is no homogeneous term, we can write the hydrodynamic force as

L&f = 6m(e,A° + €482, (4.23)

apfic

and, since no true scalar can be constructed with the vectors €2, and m, we must have p,, = const.
and

u, = kU2, (4.24)
with

AU = (6 + ) — g BLAC. (4.25)
This relation is similar to the earlier one (4.16) but the numerical results exhibit stronger fluc-
tuations, which make it somewhat more difficult to extract U°. To deal with this problem, as

suggested by the dilute-limit results of Eq. (A.7), we fit the two grouzps of terms in the right-hand
side by expressions of the form ak(4; + By (ak)’) and ak(4, + B,(ak)"). Fig. 4 shows the results of

such a fit and, even with some differences due to the scatter, does suggest that A; = 4, so that the
left-hand side of (4.25) is finite as ak — 0.
From (4.24)
1
E, = _§a2k2UCeSG?, (4.26)

while Ey = O(¢?) and V -f = 0.
We can now proceed to calculate the closure parameters by implementing the procedure out-
lined at the end of Section 2. We consider the porous medium case first.

5. Closure: porous medium

As remarked before, all the closure terms have explicit closed-form expressions in terms of
quantities that can be calculated numerically. The results of these numerical calculations are
averaged and represented in terms of the fundamental scalars, vectors and tensors introduced in
the previous section. The manner in which this is done is explained in detail in Marchioro and
Prosperetti (1999) and in papers I and II. In the case of the symmetric part of the stress, this
procedure leads to a result of the form

Ls_ ke.(s§Gg + s Gyy).- (5.1)
Hc
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Fig. 4. (a) The quantity £ 4 ¢, appearing in the mean fluid velocity (4.25) for spinning particles as a function of ka for
ﬂOD = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form ak(4 + B(ak)2)
as suggested by (A.7); (b) the quantity — %ﬁ%AC plotted similarly.

The coefficients s§ and s}, as determined from the numerical simulations are shown as functions of
ka in Figs. 5 and 6 for f, = 15%, 25% and 35%; as before the lines are quadratic fits of the form
A+ B(ak)z. The results for f, = 15% (triangles) and 25% (circles) exhibit an acceptable amount
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Fig. 5. The quantity s% appearing in expression (5.1) of the stress for a porous medium as a function of ka for ﬁ% =
15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form 4 + B(ak)z.
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Fig. 6. The quantity s%, appearing in the expression for stress (5.1) for a porous medium as a function of ka for [SOD =
15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form A + B(ak)’.

of scatter, while those for 35% are not smooth; this is probably a consequence of the use of only
five singularities to describe the particles, which limits the numerical accuracy at the higher vol-
ume fractions.
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Upon substituting the expressions (4.19) for E,,, Ey into (2.12), the symmetric part of the av-
erage stress becomes

S = [(terr — 1a)U* — poPp ke Gy + poBke,Gyy. (5.2)
Upon comparing (5.1) and (5.2), we thus have

Hegr — Hy 4o s My P
Betr —Bayps _ o BV — 2. (5.3)
Hc P Uc s
oy (54
Uc

For the reasons explained in parts I and II, we are interested in the limit of these relations as ak —
0; the values of ug — 1, and ug obtained in this limit are shown in Table 1; those for uy can be
fitted by

Y 30,763, (5.5)
Hc

Some considerations on these results will be given in Section 7.
According to (4.10), the numerical results for the isotropic part of the stress ¢, can be pa-
rameterized as

1
—fqm = _quchO -m, (56)
%)
while, from the closure ansatz (2.11),

1

—fqm = _Q2ﬁBECUO -m, (57>
Hc
from which, upon comparing and taking the limit (ak) — 0, we have
.4
0, = ](1(}210 E. (5.8)

The calculated values of ¢” are shown in Fig. 7 vs. ak. Numerical values for O, obtained from this
relation are given in Table 1 and plotted as a function of f in Fig. §; the line is a fit of the form

0, = 558637 (5.9)

The term corresponding to (,, being an isotropic contribution to the stress, may be considered as
a pressure effect due to the flow; thus, its rapid rising with increasing volume fraction is not
surprising (Tables 1 and 2).

Table 1

Values of the closure parameters for the porous medium simulations at three volume fractions in the limit ak — 0
Po (7o) (Merr — 144)/ i fy /i K &) "
15 0.150 0.392 0.263 ~0 0.069
25 0.174 0.989 0.140 1.03 0.186

35 0.0391 3.06 0.0726 4.70 0.414
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Fig. 7. The quantity ¢” appearing in the isotropic part of the stress for a porous medium, Eq. (5.6), as a function of ka
for % = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form 4 + B(ak)*.
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By

Fig. 8. The values of the coeflicient O, of the isotropic part of the stress for a porous medium evaluated from (5.8) as a
function of the disperse-phase volume fraction f,; the points are the computed values and the line the fit (5.9).
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Table 2

Values of the closure parameters for the spinning particles simulations at three volume fractions
Bo (Vo) (Hetr — Ha)/ He 1§ " Ly
15 0.410 4.12 0.0623 1.34
25 0.174 7.51 0.166 1.59
35 0.0391 12.6 0.351 1.89

Omitting the terms proportional to €., which are found to vanish, we parameterize the nu-
merical results for the polar vector of the antisymmetric part of the stress similarly to (4.9), i.e.,

1
#—CV = "U" + (o] U} + o U e, (5.10)

while, from the closure relation (2.13), we have

1 1 1
—V=nu+ {U‘V<Vl +k2a2<V3 —5V- V9>> - (EVS - Vé)ﬁi)kzaz] e, UY
Hc

1
— (5 Vs + V5 — V8>k2azﬁgesu‘|). (5.11)
Upon comparing, we find the three relations
V= }liir%)vo, (5.12)
272 1 S

0 =vf +ak < s+ 17— Vs)ﬁm (5.13)

dn 1 1
L LU N+ (V—=Vi—Vo || =oF + K =V — W& ) B (5.14)

dfp 2 2

The parameter t° is shown as a function of ak in Fig. 9 for three volume fractions; the scatter is
minimal and the zero-intercepts, giving ¥;, well defined. The corresponding values are given in
Table 1 and plotted as a function of f, in Fig. 10; the line is a fit of the form *

Vi = 3.62665". (5.15)

For consistency of (5.13) the limit of vP for ak — 0 should vanish; the numerical results suggest
values of the order of 10~ — 1073, Wthh is compatible with 0 given the present numerical
accuracy. In the limit ak — 0, the last relation (5.14) gives

dn
dﬁ;ﬁD—l—USVl = (5.16)

Segments with the slope dV;/df, given by this relation are shown by the dotted lines in Fig. 10;

the numerical values obtained from the fit (5.15) are 1.142, 1.904, 2.665, respectively, for i, =
15%, 25% and 35%, while those found from (5.16) are 1.069, 1.719, 2.770.

3 If the exponent is changed from 2.10 to 2, the prefactor changes from 3.626 to 3.136.
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Fig. 9. The quantity t° appearing in the polar vector component of the antisymmetric stress of a porous medium,
Eq. (5.10), as a function of ka for BOD = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-
squares fits of the form 4 + B(ak)’.
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Fig. 10. The coefficient V; of the polar vector component of the antisymmetric stress of a porous medium evaluated
from the zero-intercept of v° shown in the previous figure according to (5.12) as a function of the disperse-phase volume
fraction fy; the points are the computed values and the line the fit (5.15). The dashed segments have the slope given by

(5.16).
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The numerical results for the axial vector R of the antisymmetric part of the stress can be
parameterized as

Lro rvekm x U, (5.17)
Hc

from which, upon comparing with (2.14),

o= [GRI —R4> + k*a? <R3 - %Rgﬂ U* — Rspp, (5.18)
and, as (ka) — 0,
1
¢ = <§R1 —R4> US—Rjﬁi) (519)

Unfortunately the present flow situation does not give sufficient information for the determination
of any of the closure parameters for R.

By substituting (4.9), (4.20) and (4.15) into Eq. (2.7), we find that the numerical results for f can
be written as

of = —apch’ [AoUo e (1 — KBl UD + esA‘lUl} , (5.20)
while, from the closure relation (2.15), we have

1
of = 6mucapc [FlUO + (F1 +a’k? (F3 —5F - F9>> U'e,U) — azkng[fEeSUo} : (5.21)

Upon comparing,
1

F=—F— (5.22)
K(fp)

dF 1 1

LB L R+ (B —-F—FK ) |U =4+ 5 —F | . (5.23)
dpfp 2 2

Upon eliminating F; between these two relations and taking the limit (ak) — 0, we have

dK K

— = (U —K4"), 5.24
dﬁD ﬁD ( J_) ( )

which should be consistent with the expression of K given in (4.7). As before, segments with the
slope given by this relation are shown by the dotted lines in Fig. 2; numerically, Eq. (4.7) gives
—-2.090, —0.8535, —0.3505 for fp = 15%, 25% and 35%, while, from (5.24), we have —2.307,
—0.8881, —0.4325, respectively. A good degree of consistency is therefore observed.
Proceeding in the same way in the case of the hydrodynamic couple given by (2.16) we start by
writing, as in (4.10),
1

—M = mvekm x U°, (5.25)
Hc
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which, upon comparison with (2.16), leads to
n’m® = [((1/2)Ly — Ls) + kK*a*(Ls — (1/2)Lo)|U* — Lspy,, (5.26)
from which, as (ka) — 0,
n’m® = ((1/2)Ly — Ly)U* — Lsf},. (5.27)

Here, the situation is similar to that encountered before for R and none of the coefficients can be
determined.

6. Spinning particles closure

The procedure for the case of particles with an imposed angular velocity is identical to that
followed in the previous section. The situation is somewhat simpler as the isotropic part of the
stress gy, 1s readily seen from (2.11) to vanish, which is consistent with the numerical results; the
axial part of the antisymmetric component of the stress also vanishes.

The analog of Egs. (5.1), (5.10), and (5.20), (5.25) are

S = —(Herr — HA)azszcﬁsG?’ (6.1)
1 272 1 )
,u_V: N +ak —V3+§VZ;+V9 Uake.82,, (6.2)
C

1
of = —6mpcafc [Fl + d*i (F3 —5Fi—- Fg)]akuceCQL, (6.3)
n 1 2 2 1 €72 2
7M:—LIQ—|— 5L1—L4—|—ka L3—§L9 UkaeszQL, (64)
Hc

while a direct calculation on the basis of the right-hand sides of (2.12), (2.13), (2.15), and (2.16)
gives

1

—S = —s¢e,a’K* G, (6.5)
e
1 2
—V =1‘ake 2, . (6.6)
e
of = 6nfouca’e. AR, (6.7)
,uiM = —m'Q + miehk’a’m x Q. (6.8)
C

Figs. 11 and 12 show the calculated values of s¢ and v° as functions of ka and Fig. 13 gives m’; a
graph for 4¢ was provided in Fig. 4(b).
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Fig. 11. The quantity s§ appearing in the expression for stress (6.5) for a system with spinning particles as a function of
ka for ﬁ% = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares fits of the form
A+ B(ak)’.
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Fig. 12. The quantity v“ appearing in the polar vector component of the antisymmetric stress of a spinning particle
system in Eq. (6.6) as a function of ka for ,/)’(,)D = 15% (triangles), 25% (black circles) and 35% (squares); the lines are
least-squares fits of the form A + B(ak)®.
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Fig. 13. The quantity m” appearing in the expression of the hydrodynamic couple acting on spinning particles in
Eq. (6.8) as a function of ka for ﬁ% = 15% (triangles), 25% (black circles) and 35% (squares); the lines are least-squares
fits of the form A + B(ak)’.

0

Upon comparing (6.1) with (6.5) we deduce that

Hett = P4 e _ 52, (6.9)
He

from (6.6) and (6.2)

NU® = v = kPa* (Vs — (1/2)Va = Vo)UY, (6.10)
from (6.3) and (6.7)

AC = —RU =@k (F — (1/2)F; — KU, (6.11)
and from (6.4) and (6.8)

m =L, (6.12)

m* = [(1/2)L, — Ly + K*a*(Ly — (1/2)Lo)|U°. (6.13)

In the limit ak — 0,

C c

. . A )
=iy fiToimye b=dme (614
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The parameter L; had not been determined in the porous medium case, while the other two were.
Upon comparing the results given by (6.9) and (6.14) with those found earlier, we can test the
independence of the proposed closure on the particular flow simulation. This comparison will be
made in the following section.

7. Discussion

In papers I and II, the present systematic method for the derivation of closure relations was
applied to the three cases of particles subject to the same force, the same torque and a simple
shear. In the present paper, we have applied the technique to particles moving with the same
translational or angular velocity. If true constitutive equations exist, the closure relations and the
coefficients appearing in them should be the same for all these cases.

Consider the gravitational settling of a uniform suspension. In this case, all gradients vanish
except Vpy, and all particles are subjected to the same force b = ppvg, where pp is the particle
density and g the gravity force per unit mass; upon eliminating Vp, between (2.3) and (2.6) we
thus find f = b or, from the closure relation (2.15) with F () expressed in terms of the hindered
settling function ®(fp) calculated in papers I and I,

e e
foedim = —=—=——— —=Up. 7.1

This situation may be contrasted with the pressure-driven flow through a uniform porous medium

considered in the present paper. The continuous-phase momentum equation (2.3) gives

ﬂCme = ﬂDfporousa (72)
or, since in the uniform case, from (3.10) and (4.13), Vp,, = Vp, andu,, = Uy, from (4.5) and (4.6),

e  uc
f rous — m - .
o 2K(Pp) @ (7.3)

For the two expressions for the interphase force to be equal, it would evidently be necessary that
the hindered settling function @ equal the dimensionless permeability K, which is not supported
by the numerical evidence as shown in Table 3.

At a fundamental level, this discrepancy is not surprising as, for a prescribed equal force on the
particles (as, e.g., in sedimentation), the microscopic particle velocities must be found from

F = 2W, (7.4)

Table 3
Comparison among the values of the closure coefficients K, 7}, and ¥ as derived from the sedimentation and applied
couple simulations of paper II, and the porous medium and spinning particles simulations of the present paper

Bo K " b4

() Sedim. Por. md. Spinn. Sedim. Por. md. Spinn. Couple Spinn.
15 0.352 0.263 0.243 0.0531 0.0690 0.0623 0.789 0.671

25 0.188 0.140 0.133 0.145 0.186 0.166 0.670 0.943

35 0.0989 0.0726 0.0784 0.315 0.414 0.351 0.557 1.11
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where Z is the resistance matrix and the vectors F, W contain the forces and velocities of all the
particles. However, if an equal velocity is prescribed for the particles (as in the case of a porous
medium), the force acting on them must be found from

W = /F, (7.5)

where ./ is the mobility matrix. From these equations, after taking the ensemble average, we have

2 'F=W, and .#'W=F, (7.6)

respectively, given that in the first case the forces are the same for all the particles while in the
second case the velocities are equal. For these two relations to be compatible it would evidently be
necessary that

@ =, (7.7)

which, while valid before averaging, is not necessarily true after taking the ensemble average.

A parallel argument can be made for the case of particle rotation. In paper II, it was shown that
L, was related to the hindrance function for rotation ¥(f,) (also called dimensionless vortex
viscosity, see Brenner, 1984) by

6fp

p —2Pp
L

(7.8)
In paper II, ¥ was calculated from simulations in which the particles were subjected to equal
couples; those values are shown in Table 3, where they are compared with those found using the
L, of the previous section. The two sets of results are clearly quite different and even exhibit an
opposite trend with increasing . This qualitative difference arises from the slower growth of L;
with f in the spinning particle case.

While this argument justifies the fact that the two expressions (7.1) and (7.3) for the interphase
force and the corresponding ones for the couple are not consistent, it does lead to the somewhat
perplexing conclusion that an averaged description as the one attempted here and in many other
studies appears to be insufficient to completely characterize the system.

Superficially, the situation is similar to results of Almog and Brenner (1997, 1998), who
compared the motion of a sphere in a suspension for a prescribed force and a prescribed velocity
finding that the effective viscosity of the suspension differs in the two cases; a similar comparison
for the rotational motion with a given couple or a given angular velocity also revealed differences
(Almog and Brenner, 1998). The root of the differences found in these studies is in the way the
flow determines the spatial probability distribution of the suspended spheres, but this explanation
does not apply in our case as the same set of configurations was used in all the flow situations
considered in this and in the earlier papers.

It would then appear that, if a satisfactory closure exists at all, it must contain one or more
additional variables which must differ for the two cases of equal forces and equal velocities and,
even if such a description is possible, the problem remains of finding evolution equations for these
additional parameters. Furthermore, the results of Almog and Brenner (1997, 1998) suggest that
the spatial particle probability distribution, as affected by different flow situations, would also play
a role.
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It might be tempting to argue, as one of the reviewers of this paper did, that “a porous
medium and a suspension are two quite different media, and there is no reason to expect that
they should be governed by the same equations, let alone the same coefficients.” At one level,
this is certainly true and, as a matter of fact, several authors have commented on the difference
between the two situations starting with Brinkman (1947), (see also e.g., Lundgren, 1972;
Saffman, 1973). But this position evades the issue: in the reference frame in which the mean
particle velocity vanishes, a sedimenting suspension and a porous medium are indistinguishable
if described solely in terms of velocities, volume fraction, and mean pressure (augmented, in the
former situation, by the gravitational potential). Furthermore, one may conceptually imagine a
continuous transition from one case to the other by allowing the particles to be attached less
and less loosely to certain fixed sites. How is this information to be incorporated into the
averaged equations?

A possible additional variable to introduce in the theory is the standard deviation of the particle
velocity a,, (and perhaps the corresponding quantity for the angular velocity), which might be
related to some form of “granular temperature” (see e.g., Jenkins and Louge, 1997; Koch and
Sangani, 1999). Such a variable would be compatible with linearity and would vanish in the
porous medium case but not for sedimentation. In principle, this hypothesis can be tested by the
same techniques used in this work: consider a sedimentation case in which the settling particles
have different masses assigned according to a certain probability distribution and calculate the
resulting velocity probability distribution. Then carry out a “porous medium” simulation by
assigning the particle velocities according to the probability distribution determined from the
sedimentation simulation. If the hypothesis is correct, the closure coefficients found in the two
cases should agree. One may also follow the opposite route starting with prescribed unequal
velocities, calculating the force probability distribution, etc.

The presence of additional — or “hidden” — variables might also justify the perplexing fact
encountered in our work that, while the averaging of some quantities converges relatively fast and
gives rise to smooth dependencies on ak, for other quantities convergence of the average is more
problematic (see for example Figs. 10, 11 and 16 in paper I or Fig. 2 in paper II).

Looking back to the simulations of papers I and II with the hindsight of the possible
existence of hidden variables, one must conclude that quantities such as ¢,, would not be equal
in the three situations simulated in those papers. Nevertheless, the effective viscosity was found
to agree in the three cases, which shows this concept to be robust and apparently independent
of the flow considered (other than, of course, a possible indirect effect through the dependence
of the particle probability distribution function). Two other closure parameters that could in
principle be obtained from more than one type of flow situation were the two additional
viscosities u, and py the determination of which, however, as explained in detail in paper II,
was uncertain. Upon comparing those values with the present ones (Table 4) again we find
inconsistencies. Thus, while our numerical simulations strongly imply that the corresponding
terms are necessary to parameterize the simulation results (in the sense that, were they
omitted, certain quantities should vanish in clear conflict with the numerical evidence), all we
can say at this point is that we have been unsuccessful in determining the values of these
parameters.

Finally, in paper II, O, was found by combining results for the two cases of sedimentation and
imposed shear. The corresponding results, as shown in Table 4, are at variance with the present
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Table 4
Comparison between the values of the closure coefficients u; — u,, uv/tic, and O, derived in paper II and the porous
medium simulations of the present paper

Bo (et — 1a)/ e ty /e 0,

(%) Sedim. Por. md. Spinn. Paper 11 Por. md. Paper 11 Por. md.
15 0.112 0.150 0.410 1.17 0.392 1.15 ~ 0

25 0.153 0.174 0.224 2.65 0.989 2.39 1.03

35 ~0 0.0391 0.197 7.39 3.06 5.55 4.70

ones determined for the porous medium. This finding suggests the possibility that the “true”
values of O, could be different for the two situations of paper II so that combining them might
have been incorrect.

8. Conclusions

The great effort devoted over the past several decades to the formulation of averaged equations
for multiphase flow is based on the tacitly accepted postulate that such a description is possible
independently — at least over a practically useful range — of the particular flow situation. In
particular, in the widely used class of so-called ‘two-fluid models’, it is assumed that an average
description solely phrased in terms of the average velocities, volume fraction, and mixture pres-
sure is possible. Our results furnish the first conclusive test of this widely held assumption for the
particular case of particles suspended in Stokes flow — and they suggest that it is false for the
general case of spatially non-uniform flows.

The implications of these findings are unclear at present. It may be that a useful averaged
description can be found with the simple addition of one or a few additional variables, as dis-
cussed in the previous section, or that only specialized models for different classes of flows can be
formulated, which cannot be reconciled with each other. This is obviously an important question
that can only be answered by further work; the techniques developed in the present series of
papers can be adapted to this task.

As a final point, we would like to note that, when the closure relations (2.11)—(2.15) are sub-
stituted into the momentum equation (2.3), the term multiplying V?u,,, to which one can refer as
the Brinkman viscosity ug, is

_ 1 1
@:M+_R1+R4+Vl+6na2ﬁC(F3——E1—F9>- (8.1)
He Hc 2 2

It seems highly probable that this expression cannot be reduced to any simple combination of
U and pe, which explains the failure of past attempts along these lines. Unfortunately, since
we have not been able to calculate all the coefficients appearing in this relation, we cannot test
this conclusion against the direct determinations of uy in the literature (see e.g., Martys et al.,
1994).
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Appendix A. The dilute limit

When adapted to the present case, the momentum equation derived for the continuous phase in
Zhang and Prosperetti (1997) for the dilute limit is (see also the Appendix to paper I)

1 5 3
0= —#—me + ppf+V- [2(1 + EﬁD>Em] —|—ZV2(ﬁDuA) + 3V x (fpw). (A.1)
C
The expression given in the same paper for the mean hydrodynamic force reduces here to
2
ppuf = —6nucafp <urrl + %Vzum> . (A.2)

For the two situations studied in this paper, the solution of these equations is readily found; we
can carry both together if we write

Bo = B + Bres, (A.3)
L —iPOU0 x—i—iP" U’ m (A.4)
ulm T T g 2k T '

u, = U+ U, U + Ute Q. (A.5)

When these expressions are substituted into Egs. (A.1) and (A.2), one finds the following ex-
pressions for the coeflicients arising in the parameterizations presented in Section 4:
Porous medium (2, = 0):

2k2 a2k2 ﬁs
PO e 0 Pc — 1 - a— o s = — 1 _— —D . A
ﬁD: ( 6 ) D> U ( 6 ) ﬁ(])) ( 6)
Imposed angular velocity (U° = 0):
U :% aﬂ2 (A.7)

v
3B

All other quantities not explicitly given are equal to zero. The quadratic dependence of f, on ak

shown in (3.7) justifies the k-dependence assumed in writing the coefficients of Section 4.
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